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A topological index is actually designed by transforming a chemical structure into a number. These topological indices 
associate certain physico-chemical properties like boiling point, stability, strain energy etc of chemical compounds. Graph 
theory has found a considerable use in this area of research. The topological properties of certain networks are studied 
recently. In this paper, we extend this study to interconnection networks and derive analytical closed results of general Randi

c  index ( )R G  for different values of `` " for octagonal network, toroidal polyhex and generalized prism. We also 

compute first Zagreb, ABC , and GA  indices for these important classes of networks. 
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1. Introduction and basic definitions 
 
Cheminformatics is new subject which is a 

combination of chemistry, mathematics and information 
science. It studies Quantitative structure-activity (QSAR) 
and structure-property (QSPR) relationships that are used 
to predict the biological activities and properties of 
chemical compounds. In the QSAR /QSPR study, 
physico-chemical properties and topological indices such 
as Wiener index, Szeged index, Randi c  index, Zagreb 

index and ABC  index are used to predict bioactivity of 
the chemical compounds. 

A topological index is a function “Top”  from “Σ”  to 
the set of real numbers, where  “Σ”  is the set of finite 
simple graphs with property that Top(G) = Top (H)  if both 
G and H are isomorphic. There is a lot of research which 
has been done on topological indices of different graph 
families so far, and is of much importance due to their 
chemical significance. A topological index is actually a 
numeric quantity associated with chemical constitution 
purporting for correlation of chemical structure with many 
physico-chemical properties, chemical reactivity or you can 
say that biological activity. Actually topological indices are 
designed on the ground of transformation of a molecular 
graph into a number which characterize the topology of that 
graph. 

Multiprocessor interconnection networks are often 
required to connect thousands of homogeneously replicated 
processor-memory pairs, each of which is called a 
processing node. Instead of using a shared memory, all 
synchronization and communication between processing 
nodes for program execution is often done via message 
passing. Design and use of multiprocessor interconnection 

networks have recently drawn considerable attention due to 
the availability of inexpensive, powerful microprocessors 
and memory chips [8]. The octagonal, toroidal polyhex and 
generalized prism networks have been recognized as 
versatile interconnection networks for massively parallel 
computing. This is mainly due to the fact that these families 
of networks have topologies which reflect the 
communication pattern of a wide variety of natural 
problems. Toroidal polyhex networks have recently 
received a lot of attention for their better scalability to 
larger networks, as opposed to more complex networks 
such as hypercubes [10]. 

A graph G(V,E) with vertex set V  and edge set E  is 
connected, if there exist a connection between any pair of 
vertices in G . A network is simply a connected graph 
having no multiple edges and loops. A chemical graph is a 
graph whose vertices denote atoms and edges denote bonds 
between that atoms of any underlying chemical structure. 
The degree of a vertex is the number of vertices which are 
connected to that fixed vertex by the edges. In a chemical 
graph the degree of any vertex is atmost 4 . The distance 
between two vertices u  and v  is denoted as  
d(u,v)=dG(u,v) and is the length of shortest path between 
u  and v  in graph G . The length of shortest path 
between u  and v  is also called u v  geodesic. The 
longest path between any two vertices is called u v  
detour. 

In this article, G  is considered to be network with 

vertex set ( )V G  and edge set ( )E G , ud  is the degree 

of vertex ( )u V G . The concept of topological index 

came from work done by Harold Wiener in 1947  while 
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he was working on boiling point of paraffin. He named this 
index as path number. Later on, path number was renamed 
as Wiener index [30] and then theory of topological index 
started.   

Definition.1. Let G  be a graph. Then the Wiener 

index of G  is defined as  
 

( , )

1
( ) = ( , )

2 u v

W G d u v
 

 
where ( , )u v  is any ordered pair of vertices in G  and 

( , )d u v  is u v  geodesic. The very first and oldest 

degree based topological index is Randi c  index [28] 

denoted by 1

2

( )R G


 and introduced by Milan Randi c  

in1975    

Definition.2. The Randi c  index of graph G  is 
defined as  

 

1
( )2

1
( ) =

uv E G u v

R G
d d 


 

 
The general Randić index was proposed by Bollobás 

and Erdös [4] and Amic et al. [1] independently, in 1998 . 
Then it has been extensively studied by both 
mathematicians and theoretical chemists [19]. Many 
important mathematical properties have been established 
[5]. 

The general Randić index ( )R G  is the sum of 

( )u vd d   over all edges = ( )e uv E G  defined as  

 

( )

( ) = ( )u v
uv E G

R G d d 





 
 

Obviously 1

2

( )R G


 is the particular case of ( )R G  

when 1
=

2
  . 

An important topological index introduced about forty 
years ago by Ivan Gutman and Trinajstić is the Zagreb 
index or more precisely first zagreb index denoted by 

1( )M G  and was defined as the sum of degrees of end 

vertices of all edges of G .   

Definition.3. Consider a graph G , then first zagreb 
index is defined as  

 

1
( )

( ) = ( )u v
uv E G

M G d d



 

 
 

Definition.4. Consider a graph G , then second 
zagreb index is defined as  

2
( )

( ) = ( )u v
uv E G

M G d d



 

 
One of the well-known degree based topological index 

is atom-bond connectivity ( )ABC  index introduced by 

Estrada et al. in [13].   
Definition.5. For a graph G , the ABC  index is 

defined as  
 

( )

2
( ) = u v

uv E G u v

d d
ABC G

d d

 
 

 
Another well-known connectivity topological 

descriptor is geometric-arithmetic ( )GA  index which was 

introduced by Vukičević [29].  
Definition.6. Consider a graph G , then its GA  

index is defined as  
 

( )

2
( ) =

( )
u v

uv E G u v

d d
GA G

d d 
 

 

Definition.7. A cartesian product 1 2G GW  of two 

graphs 1G  and 2G  is the graph with the vertex set 

1 2( ) ( )V G V G  and the vertex ( , )a b  is adjacent to the 

vertex ( , )c d  if and only if =a c  and b  is adjacent to 

d  or =b d  and a  is adjacent to c .   
 
 
2. Main Results 
 
In this paper, we study the general Randić, First 

Zagreb, ABC  and GA  indices and give closed 
formulae of these indices for octagonal network, toroidal 
polyhex and generalized prism. For further study of 
topological indices of various graph families see, 
[15-18,20,27].  

 
 
2.1. Results for octagonal networks 
 

For , 2n m   we denote octagonal network by m
nO , 

the planar map labeled as in Figure (1) with m  rows and 

n  columns of octagons. The symbols ( )m
nV O  and 

( )m
nE O  will denote the vertex set and the edge set of m

nO , 

respectively.
   

 



886                                       M. K. Siddiqui, M. Naeem, N. A. Rahman, M. Imran 

 

 
Fig 1. The Octagonal network m

nO  
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The number of vertices and number of edges in an 
Octagonal network are (4 2) 2m n m   and 

(6 1)m n m   respectively. We compute general Randi

c  index ( )R G  with 1 1
= 1, 1, ,

2 2
    in the 

following theorem of Octagonal network.   

Thorem.1. Consider the Octagonal network m
nO , 

then its general Randi c  index is equal to  

54 13( ) 4, =1;

1
18 11( ) 20 6(4 4 8), = ;

2
( )= 12 11( ) 2

, = 1;
18

6 2( ) 9 4 4 8 1
, = .

3 26

m
n

mn m n

mn m n n m

R O mn m n

mn m n n m











  

      


   


      
 

Proof. Let G  be an Octagonal network m
nO . The 

number of vertices and edges in m
nO  are 

(4 2) 2m n m   and (6 1)m n m   respectively. 

There are three types of edges in m
nO  based on degrees of 

end vertices of each edge. Table 1 shows such a edge 

partition of m
nO . 

 

Table 1 . Edge partition of Octagonal network 
m
nO

 
 

( , )u vd d

where 
( )uv E G

 

 (2, 2)    (2,3)    (3,3)   

 
Number of 
edges  

  
2 2

4

n m


  

 
4 4

8

n m

  

  
6 5

5 4

mn n

m


 

 

 
 

For =1 , we apply the formula of ( )R G   

 

1
( )

( ) = ( )u v
uv E G

R G d d



 

 
By using edge partition given in Table 1, we get  
 

1( ) = (2 2 4)(2 2) (4 4 8)(2 3)

(6 5 5 4)(3 3)

R G n m n m

mn n m

      
    

1( ) = 54 13( ) 4R G mn m n     
 

For 
1

=
2

 ,  we apply the formula of ( )R G   

 

1
( )2

( ) = ( )u v
uv E G

R G d d



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By using edge partition given in Table 2, we get  
 

1

2

( ) = (2 2 4) (2 2) (4 4 8) (2 3)

(6 5 5 4) (3 3)

R G n m n m

mn n m

      

      

1

2

( ) = 18 11( ) 20 6(4 4 8)R G mn m n n m      

For = 1  , we apply the formula of ( )R G .  

1
( )

1
( ) =

( )uv E G u v

R G
d d

 
   

1

1 1
( ) = (2 2 4) (4 4 8)

(2 2) (2 3)

1
(6 5 5 4)

(3 3)

R G n m n m

mn n m

     
 

   
  

1

12 11( ) 2
( ) =

18

mn m n
R G

  


 

For 
1

=
2

  , we apply the formula of ( )R G   

1
( )2

1
( ) =

( )uv E G u v

R G
d d  


   

1

2

1 1
( ) = (2 2 4) (4 4 8)

(2 2) (2 3)

1
(6 5 5 4)

(3 3)

R G n m n m

mn n m


    

 

   
  

1

2

6 2( ) 9 4 4 8
( ) =

3 6

mn m n n m
R G


    
 

 
In the following theorem, we compute first Zagreb 

index of Octagonal networks m
nO .   

Theorem.2. For an Octagonal network m
nO , the first 

Zagreb index is equal to  
 

1( ) = 36 2 2m
nM O mn n m   

 

Proof. Let G  be an Octagonal network m
nO . By 

using edge partition from Table 2, we easily prove it. We 
know  

1
( )

( ) = ( )u v
uv E G

M G d d



 

1( ) = (2 2 4)(2 2) (4 4 8)(2 3)

(6 5 5 4)(3 3)

M G n m n m

mn n m

      
    

By doing some calculation, we get 

1( ) = 36 2 2M G mn n m    
Now we exhibit ABC  index of Octagonal network 

m
nO  in the following theorem.   

Theorem.3. For an Octagonal network m
nO , the 

ABC  index is equal to  
12 10 10 8

( ) = 2(3 3 2)
3

m
n

mn n m
ABC O n m

  
  

Proof. Let G  be Octagonal network m
nO . By using 

edge partition given in Table 2, we easily prove it. We 
know  

( )

2
( ) = u v

uv E G u v

d d
ABC G

d d

 
   

2 2 2
( ) = (2 2 4)

2 2

2 3 2
(4 4 8)

2 3

3 3 2
(6 5 5 4)

3 3

ABC G n m

n m

mn n m

 
 



 
  



 
   



 

By doing some calculation, we get 
12 10 10 8

( ) = 2(3 3 2)
3

mn n m
ABC G n m

  
   

In the following theorem, we compute GA  index of 

Octagonal network m
nO .   

Theorem.4. Consider an Octagonal network m
nO , then its 

GA  index is equal to  

8 6( 2)
( ) = 6 3( ) 8

5
m
n

n m
GA O mn n m

 
     

Proof. Let G  be an Octagonal network m
nO . By using 

edge partition given in Table 2, we easily prove it. We 
know 

 

( )

2
( ) =

( )
u v

uv E G u v

d d
GA G

d d 
2 2 2

( ) = (2 2 4)( )
2 2

2 2 3
(4 4 8)( )

2 3

2 3 3
(6 5 5 4)( )

3 3

GA G n m

n m

mn n m


 




  



   


 

By doing some calculation, we get  

8 6( 2)
( ) = 6 3( ) 8

5

n m
GA G mn n m

 
    

 
 
2.2. Results for toroidal polyhex 
 
The discovery of the fullerene molecules has 

stimulated much interests in other possibilities for carbons. 
Many properties of fullerenes can be studied using 
mathematical tools such as graph theory and group theory. 
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A fullerene can be represented by a trivalent graph on a 
closed surface with pentagonal and hexagonal faces, such 
that its vertices are carbon atoms of the molecule. Two 
vertices are adjacent if there is a bond between 
corresponding atoms. Deza et al. [12] considered fullerene's 
extension to other closed surfaces and showed that only 
four surfaces are possible, namely sphere, torus, Klein 
bottle and projective (elliptic) plane. The usual spherical 
fullerenes have 12  pentagons and elliptic fullerenes have 
6  pentagons. The toroidal and Klein bottle's fullerenes 
contain no pentagons, see [12,24]. 

 

 
Fig. 2. 3D Polyhex Torus 

 
 

A  toroidal fullerene (toroidal polyhex), obtained 
from 3D Polyhex Torus Fig. 2, is a cubic bipartite graph 
embedded on the torus such that each face is a hexagon. 
Note that the torus is a closed surface that can carry graph 
of toroidal polyhex such that all its vertices have degree 3  
and all faces of the embedding are hexagons. 

Some features of toroidal polyhexes with chemical 
relevance were discussed in [22,23]. For example, a 
systematic coding and classification scheme were given for 
the enumeration of isomers of toroidal polyhexes, the 
calculation of the spectrum and the count for spanning 
trees. The optical and vibrational properties of toroidal 
carbon nanotubes can be found in [3]. There have appeared 
a few works in the enumeration of perfect matchings of 
toroidal polyhexes by applying various techniques, such as 
transfer-matrix and permanent of the adjacency matrix [6]. 
Ye et al. [30]have studied a k-resonance of toroidal 
polyhexes and Kang [21] classified all possible structures 
of fullerene Cayley graphs. 

Let L  be a regular hexagonal lattice and n
mP  be an 

m n  quadrilateral section (with m  hexagons on the top 
and bottom sides and n  hexagons on the lateral sides, n  
is even) cut from the regular hexagonal lattice L . First 

identify two lateral sides of n
mP  to form a cylinder, and 

finally identify the top and bottom sides of n
mP  at their 

corresponding points, see Figure 2. From this we get a 

toroidal polyhex n
mH  with mn  hexagons. 

 

Let ( ) = { , : 0 1, 0 1}n i i
m j jV u v i n j m     H  

be the vertex set. The set of edges of n
mH  we split into 

mutually disjoint subsets such that 
for i  even, 0 2i n    

= { : 0 1}i i
i j jA u v j m    and 

1= { : 0 1}i i
i j jA v u j m    for i  odd, 1 1i n   , 

= { : 0 1}i i
i j jB v u j m    and 

1= { : 0 1}i i
i j jB u v j m    , and for 0 1i n    

1= { : 0 1}i i
i j jC v u j m    , where i  is taken modulo 

n  and j  is taken modulo m .  

Thus 

1 1
2

2 2 2 1 2 1=0 =0
( ) = ( )

n
nn

m i i i i ii i
E A A B B C

 

      H

We easily know that n
mH  has 2mn  vertices and 3mn  

edges. 

 
 

Fig. 3. Quadrilateral section 
n

mP  cuts from the regular 

hexagonal lattice 
 
 

Baca et.al [2], compute atom-bond connectivity index 

and geometric–arithmetic index of toroidal polyhex n
mH . 

Now we compute its general Randic index ( )R G  with 

1 1
= 1, 1, ,

2 2
    in the following theorem. 

Theorem. 5. Consider the toroidal polyhex n
mH , then 

its general Randic  index is equal to  



Computing topological indices of certain networks                                           889 
 

2 7 , = 1 ;

1
9 , = ;

2
( ) =

= 1 ;
3

1
, = .

2

n
m

m n

m n

R m n

m n



















 

H

 
Proof. Let G  be the toroidal polyhex n

mH  with 

defining parameters as m  and n . The number of vertices 

and edges in toroidal polyhex n
mH  are 2mn  and 3mn  

respectively.There are only one types of edges in toroidal 

polyhex n
mH  based on degrees of end vertices of each 

edge. Table 2 shows such an edge partition of toroidal 

polyhex n
mH .   

Table 2. Edge partition of toroidal polyhex 
n
mH . 

 

( , )u vd d  where 

( )uv E G  

Number of edges 

(3,3)  3mn  

 

For =1 , we apply the formula of ( )R G   

1
( )

( ) = ( )u v
uv E G

R G d d



 

By using edge partition given in Table 2, we get  

1( ) = 3 (3 3) = 27R G mn mn  

For 
1

=
2

 , we apply the formula of ( )R G   

1
( )2

( ) = ( )u v
uv E G

R G d d



 

By using edge partition given in Table 3, we get  

1

2

( ) = 3 3 3 = 9R G mn mn
 

For = 1  , we apply the formula of ( )R G   

1
( )

1 1
( ) = = 3 =

( ) 3 3 3uv E G u v

mn
R G mn

d d



 

 

For 
1

=
2

  , we apply the formula of ( )R G   

1
( )2

1 1
( ) = = 3 =

( ) 3 3uv E G u v

R G mn mn
d d 


 


 

In the following theorem, we compute first Zagreb index of 

toroidal polyhex n
mH .   

 
 
 
 
 

Theorem.6. For toroidal polyhex n
mH , the first 

Zagreb index is equal to  

1( ) = 18n
mM mnH  

Proof. Let G  be the toroidal polyhex n
mH . By using 

edge partition from Table 3, we get the result. We know  

1
( )

( ) = ( ) = 3 (3 3) = 18u v
uv E G

M G d d mn mn


 
  

 
2.3. Result for generalized prism 
 

The  generalized prism m
nP  can be defined as the 

Cartesian product n mC PW  of a cycle on n  vertices with 

a path on m  vertices. If we consider a cycle nC  with 

( ) = { :1 }n iV C x i n  , 

1 1( ) = { :1 1} { }n i i nE C x x i n x x       and a path 

mP   with ( ) = { :1 }m jV P y j m  , 

1( ) = { :1 1},m j jE P y y j m        

then 

( ) = ( ) = {( , ) :1 ,1 }m
n n m i jV P V C P x y i n j m   W

 

1

1

1

( ) = ( ) = {( , )( , ) :

1 1,1 }

{( , )( , ) :1 }

{( , )( , ) :1 ,1 1}

m
n n m i j i j

n j j

i j i j

E P E C P x y x y

for i n j m

x y x y j m

x y x y i n j m





    
  

     

W

 

is the vertex set of the graph m
nP  and is the edge set of 

m
nP

 
repectively. 

The cartesian product of cycle and path  is depicted on 
Fig. 4.   

The generalized prism m
nP  has been studied 

extensively in recent years. Kuo et al. [25] and Chiang et al. 

[9] studied distance-two labelings of m
nP . Deming et al. 

[11] gave complete characterization of the Cartesian 
product of cycles and paths for their incidence chromatic 
numbers. Gravier et al. [14] showed the link between the 
existence of perfect Lee codes and minimum dominating 

sets of m
nP . Lai et al. [26] determined the edge addition 

number for the Cartesian product of a cycle with a path. 
Chang et al. [7] established upper bounds and lower bounds 

for global defensive alliance number of m
nP  

Now we compute these topological indices for 

generalized prism m
nP  
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Fig 4. Cartesian product of cycle and path. 
 

Theorem.7.Consider the generalized prism m
nP , then 

its general Randi c  index is equal to  

32 38 , = 1;

1
8 14 4 3 , = ;

2
( ) = 18 11

, = 1;
144

6 7 1
, = .

12 23

m
n

mn n

mn n n

R P mn n

mn n n













  


 


    
Proof. Let G  be generalized prism m

nP  with 

defining parameters m  and n . The number of vertices 

and edges in generalized prism m
nP  are nm  and 

(2 1)n m   respectively. There are three types of edges in 
m

nP  based on degrees of end vertices of each edge. Table 3 

shows such a edge partition of m
nP .   

 

Table 3 . Edge partition of 
m

nP . 

 

 ( , )u vd d  where 

( )uv E G   

 Number of edges  

 (3,3)    2n   

 (3, 4)    2n   

 (4, 4)    2 5mn n   

  
 

For =1 , we apply the formula of ( )R G  

 

1
( )

( ) = ( )u v
uv E G

R G d d



 

By using edge partition given in Table 4, we get  

1( ) = 2 (3 3) 2 (3 4) (2 5 )(4 4)R G n n mn n       

1( ) = 32 38R G mn n   

For 
1

=
2

 , We apply the formula of ( )R G  

 

1
( )2

( ) = ( )u v
uv E G

R G d d



 

 
By using edge partition given in Table 3, we get  
 

1

2

( ) = 2 (3 3) 2 (3 4)

(2 5 ) (4 4)

R G n n

mn n

  

  
 

1

2

( ) = 8 14 4 3R G mn n n  
 

 

For = 1  , we apply the formula of ( )R G  

 

1
( )

1
( ) =

( )uv E G u v

R G
d d

 
 

  

1

1 1
( ) = 2 2

(3 3) (3 4)

1
(2 5 )

(4 4)

R G n n

mn n

 
 

 


 

 

1

18 11
( ) =

144

mn n
R G




 
 

For 
1

=
2

  , we apply the formula of ( )R G  

 

1
( )2

1
( ) =

( )uv E G u v

R G
d d  


 

  

1

2

1 1
( ) = 2 2

(3 3) (3 4)

1
(2 5 )

(4 4)

R G n n

mn n




 

 


 

 

1

2

6 7
( ) =

12 3

mn n n
R G



 
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In the following theorem, we compute first Zagreb 

index of generalized prism m
nP .   

Theorem.8.For a generalized prism m
nP , the first 

Zagreb index is equal to  
 

1( ) = 16 14m
nM P mn n  

 

Proof. Let G  be generalized prism m
nP . By using 

edge partition from Table 4, we easily prove it. We know  
 

1
( )

( ) = ( )u v
uv E G

M G d d



 

1( ) = 2 (3 3) 2 (3 4) (2 5 )(4 4)M G n n mn n     
 
By doing some calculation, we get   

  

1( ) = 16 14M G mn n   

Theorem.9. For generalized prism m
nP , the ABC  

index is equal to  
 

4 5 6(2 5 )
( ) =

3 3 4
m

n

n mn n
ABC P n


 

 
 

Proof. Let G  be a generalized prism m
nP . By using edge 

partition given in Table 4, we easily prove it. We know  
 

( )

2
( ) = u v

uv E G u v

d d
ABC G

d d

 
 

  

3 3 2 3 4 2
( ) = 2 2

3 3 3 4

4 4 2
(2 5 )

4 4

ABC G n n

mn n

   


 

 
 



 

4 5 6(2 5 )
( ) =

3 3 4

n mn n
ABC G n


  

 
 

In the following theorem, we compute GA  index of a 

generalized prism m
nP

 
Theorem.10.  Consider a generalized prism m

nP , 

then its GA  index is equal to  
 

           
8 3

( ) = 2 3
7

m
n

n
GA P mn n   

 

Proof. Let G  be a generalized prism m
nP . By using 

edge partition given in Table 4, we easily prove it. We 
know  

 

( )

2
( ) =

( )
u v

uv E G u v

d d
GA G

d d 
 

2 3 3 2 3 4
( ) = 2 ( ) 2 ( )

3 3 3 4

2 4 4
(2 5 )( )

4 4

GA G n n

mn n

 


 


 


 

8 3
( ) = 2 3

7

n
GA G mn n  

 
 

3. Conclusion and closing remarks 
 
In this paper, certain degree based topological indices, 

namely general Randić index, atomic-bond connectivity 
index(ABC), geometric-arithmetic index ( GA ) and first 
zagreb index for octagonal networks as well as toroidal 
polyhex and generalized prism, were studied for the first 
time. To construct and study new architectures has always 
been an open problem in both network and art/design 
sciences. In future, we are interested to design some new 
architectures/networks and then study their topological 
indices which will be quite helpful to understand their 
underlying topologies. 
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